NORTH BRANCH CHICAGO RIVER WATERSHED WORKGROUP GENERAL MEMBERSHIP MEETING MINUTES

Lake Forest Municipal Services Building Training Room, 800 N Field Drive, Lake Forest, IL 60045 Wednesday, February 08, 2023 * 1:00pm – 3:00pm

NBWW GENERAL MEMBERSHIP MEETING MINUTES

1. Introductions

Brandon Janes, President of the North Branch Chicago River Watershed Workgroup (NBWW), welcomed attendees at 1:14 pm to the February 08, 2023 NBWW General Membership Meeting. The meeting was held in a hybrid format with presenters attending via Zoom and voting members attending in-person. Jacob Jozefowski, NBWW Coordinator for this meeting, performed roll call. A total of 19 voting members (tallying 70 votes) were in attendance, so an NBWW meeting quorum was present (see the voting quorum and meeting participants list below).

Voting Quorum: Darren Olson, Christopher Burke, Byron Kutz, City of Lake Forest; Larry Bridges, East Skokie Drainage District; Jacob Jozefowski, Lake County Stormwater Management Commission; Susan Lenz, Lake Forest Open Lands; Chuck Bodden, North Shore Water Reclamation District (NSWRD); Justin Vick, Metropolitan Water Reclamation District of Greater Chicago (MWRD); Brandon Janes, Village of Deerfield; Jonathan Happ, Libertyville Township; Mary Mathews, Illinois Sierra Club; Karolina Cho, Gewalt Hamilton Associates for the Villages of Bannockburn, Northfield and Riverwoods; Ben Metzler, Village of Green Oaks; Kate McDonnell, Village of Wilmette; Jack Bielak, Village of Northbrook, Matt Ueltzen, Lake County Forest Preserve District (LCFPD); Susan Grinnell, Union One West Fork Drainage District.

2. Public Comment - None

3. Guest Speakers

 Biological & Water Quality Assessment of the North Branch Chicago River Report: 2020-2021 Chris Yoder, Research Director, Midwest Biodiversity Institute (MBI) Chris Yoder gave an overview of MBI's methodology for collection of bioassessment data for the North Branch Chicago River watershed biological assemblages, water and sediment chemistry data, habitat data and physical data (including flow, land use and GIS data). Yoder gave a summary of the 2020-2021 North Branch Watershed Bioassessment report which includes a full analysis of NBWW 2020-2021 monitoring data, aquatic life use attainments (causes and sources), "combined" assessment for nutrient enrichment, and restorability factors. The Integrated Prioritization System (IPS) model is operated through a Power BI platform, and it gives the users an opportunity to examine assessed data such as use attainment status and associated cause and sources of impairments and restorability factors of impaired sites.

Some of the summarized highlights of the 2020-2021 data included chlorides exceedances throughout the watershed. Some of the monitoring results were affected by the flow hydrograph and in 2021 ionic strength variable exceedances were more severe. Although point sources do influence nitrogen and phosphorus, the dominant influence is nonpoint source pollution. The West Fork tributary had the most "poor" and "very poor" exceedances across 10 parameters, most (not all) emanating from the upstream sites. There were 65 total Continuous Dissolved Oxygen (DO) exceedances from the 2020-2021 data; the likely causes of excess DO are due to nonpoint source inputs coupled with low flows and increased retention time. Yoder's conclusion was a combination of urbanization coupled with legacy channelization, hydrological alternations and low gradient, the latter precluding a more complete natural recovery absent direct intervention. The 2020-2021 North Branch Chicago River Bioassessment report will be made available to the NBWW Monitoring Committee for review next week and released to the watershed stakeholders once the report is finalized.

Questions/Answers:

1. Concern was expressed over the disconnect between the Illinois EPA and the IPS model differences in impairments. Any thoughts?

This is something Chris has seen with other workgroups as well. Not sure what the path/answer would be to change this, but this is a national problem; states primarily address the 303(d) & (b) impairments and their requirements. The issue is that tackling those impairments does not penetrate other programs (permitting and other Clean Water Act programs).

- Has the U.S. EPA reviewed the IPS Model? Some of the EPA, but the question needs to be more specific. An appropriate contact for this question may be Stephen McCracken, DuPage River Salt Creek Workgroup (DRSCW), with more information on what coordination has occurred between the EPA and the IPS Model.
- 3. Are there important actionable items from this report that municipalities can use to implement? Yes, but that is dependent on individuals learning how to use the IPS Model to find those actions.
- **b.** PFAS and the impacts on NPDES permitting Presentation

Antonio (Tony) Garcia, Physical Scientist, U.S EPA Region 5

Tony Garcia gave an educational presentation on Per- and Polyfluoralkyl (PFAS) substances, which consists of a large class of synthetic chemicals created by humans. PFAS sources (since the 1940s) include pesticides, paints, firefighting foams, fast food packaging, etc... Due to the widespread use, PFAS has been identified in water, soil and air samples throughout the United States and around the world. Garcia gave an overview of the EPA's PFAS Strategic Roadmap, which sets timelines for concrete actions from 2021-2024 to protect public health and environment from PFAS.

Reducing discharges (restrict) to the environment and to publicly owned treatment works is a cornerstone of EPA's strategy to restrict PFAS, which includes effluent limitations guidelines that were released January 2023. In December 2022, EPA released an NPDES PFAS guidance how states can monitor PFAS discharges and take steps to reduce where they are detected. The Plan 15 (current effluent guidelines program plan) is targeted at industrial categories (including POTWs) that are at higher risk of PFAS discharges. The December 5, 2022 memorandum includes recommendations for EPA and States to address PFAS through NPDES permits (including best management practices), pretreatment activities and monitoring programs. The EPA is currently compiling a PFAS Analytical Tool to evaluate what is known about PFAS and the extent of PFAS monitoring. In summary, EPA is taking a comprehensive approach (research, restrict and remediate) to addressing PFAs in the environment and encourages close collaboration with State counterparts to implement strategies.

Questions/Answers:

- 1. What will these PFAS restrictions apply to all of the NPDES regulations or just navigable waters of the U.S? The Illinois EPA will be making that determination. The Illinois EPA can bring these PFAS regulations to the entire NPDES permit if they want to.
- PFAS as a pollutant of concern for over 40 years, why is the EPA just getting around to regulating it? What is the status of the EPA ORD effort to develop an aquatic life criteria?
 The EPA's decision on how and when to regulate is not something the presenters can answer at this time.

3. NBWW Business

a. Approve NBWW August 10, 2022 General Membership Meeting Summary. Larry Bridges, East Skokie Drainage District, made a motion was made to ratify the FY2023 membership seconded by Chuck Bodden, NSWRD. The motion passed with unanimous consensus vote.

b. Financials

i. Jacob Jozefowski presented the FY2022 revenue and expenditures for review. There were no comments or questions.

- Janes presented the NBWW FY2023 proposed membership dues for general membership approval. A question was asked about potential for the annual NARP expenses to be higher than expected. Valleskey answered that Geosyntec is confident in the data that was collected and the costs moving forward. Although there is still additional data to be collected within the Skokie Lagoons, Geosyntec does not expect a large change to the costs provided in the agreement with NBWW. Brandon Janes, Village of Deerfield, made a motion to approve the FY2023 proposed membership dues seconded by Jack Bielak, Village of Northbrook. Motion passed with a 14-1-3 roll call vote (see attached roll call vote spreadsheet).
- iii. Jozefowski presented the NBWW FY2023 proposed budget for general membership approval. Jack Bielak, Village of Northbrook, made a motion was made to approve the FY2023 proposed budget seconded by Brandon Janes, Village of Deerfield. Motion passed with a 15-1-3 roll call vote (see attached roll call vote spreadsheet).
- c. Old Business:
 - i. Monitoring Committee Update Rob Flood, NBWW Monitoring & Water Quality Impairment Abatement Committee Chair gave a Monitoring Committee Update. The Monitoring Committee has been focusing on the NARP and the initial findings. This year the Monitoring Committee will be focusing on some additional monitoring in the Skokie Lagoons based on the monitoring results from 2022. NSWRD will continue monitoring at all twenty-five NBWW for water column chemistry parameters through 5 sampling events, per the recently approved agreement between NSWRD and NBWW. The NBWW will be preparing the annual NPDES NBWW monitoring data submittal later this month that meets POTW and MS4 monitoring requirements.
 - ii. NBWW NARP Update

Brian Valleskey, Geosyntec Consultants, presented an update on the NBWW NARP. Valleskey reminded the workgroup of the NARP objectives, which are to address phosphorous causing excessive algae, dissolved oxygen problems, and pH problems, as well as other contributing factor such as hydraulic modifications, lack of riparian shading, excessive streambank erosion, and loss of groundwater replenishment. The two POTWs have submitted an email to the Illinois EPA for an extension for the NBWW NARP completion from December 31, 2024 to December 31, 2025. In 2021, Geosyntec completed a NARP Workplan for the workgroup and in 2022 Geosyntec completed field data collection and analysis for the NBWW NARP services. From the 2022 data, the results were field data supported nutrient related impairments likely in the West Fork and Skokie River, but the North Branch Chicago River segment does not show signs of nutrient related impairments. In 2023, Geosyntec will begin the watershed (hydrologic and water quality) model development along with additional Skokie Lagoons sampling analysis. The SWMM watershed model development will be a collection of additional data (watershed boundaries, catchment sizes, land use, etc...).

Questions/Answers

- 1. Is there a document or web reference for the IEPA risk of eutrophication methodology? Yes, that can be provided as a link after the meeting for the workgroup members.
- d. New Business: None

4. Watershed Project Updates

- a. Open Discussion: Watershed Updates
 - i. Robyn Flakne shared that the Village of Glenview is in the design phase of a streambank stabilization project.
 - ii. Larry Bridges shared that East Skokie Drainage District has moved into Phase II of the Lake Forest Streambank Stabilization Project and the project should be completed in Spring/Summer 2023.

- iii. North Shore is undergoing about a \$4M project for Chemical Phosphorus Removal systems to supplement the biological Phosphorus process at two of its plants including the Clavey Road facility. Construction is expected to be completed in the next few months.
- iv. Ashley Strelcheck, NBWW Coordinator, gave an update on the North Branch Chicago River Watershed-Based Plan. SMC will be hosting a Public Information Meeting and plans to open a public comment period in March (2023) pending The Lake County Stormwater Management Commission's approval March 2, 2023.
- **b.** Member Remarks: None.
- c. Next NBWW General Membership Meeting: August 09, 2023

5. Adjournment – 3:00 pm

Larry Bridges, East Skokie Drainage District, made a motion to adjourn seconded by Matt Ueltzen, LCFPD. The motion passed with unanimous consensus vote.

Name	Organization
Adrienne Nemura	Geosyntec Consultants
Alana Bartolai	Lake County Health Department
Andrea Schaller	U.S. Environmental Protection Agency, Region 6
Ashley Streicheck	Lake County Stormwater Management Commission
Ben Metzler	Clark Dietz for Village of Greek Oaks
Brandon Janes	Village of Deerfield
Brian Valleskey	Geosyntec Consultants
Byron Kutz	City of Lake Forest
Chris Yoder	Midwest Biodiversity Institute (MBI)
Chuck Bodden	North Shore Water Reclamation District
Cole Neder	Chicago Metropolitan Agency for Planning (CMAP)
Dudley Onderdonk	Village of Glencoe
Ed Rankin	Midwest Biodiversity Institute (MBI)
Jack Bielak	Village of Northbrook
Jacob Jozefowski	Lake County Stormwater Management Commission
Janice Aull	Aull Nature Preserve
Jim Anderson	James Anderson Company
Jim Jabcon	Chicago Botanic Garden
Jonathan Happ	Libertyville Township
Josephine Meincke	North Shore Water Reclamation District
Justin Vick	Metropolitan Water Reclamation District of Greater Chicago
Karolina Cho	Gewalt Hamilton Associates
Kate McDonnell	Village of Wilmette
Katie Piotrowska	Chicago Metropolitan Agency for Planning (CMAP)
Larry Bridges	East Skokie Drainage District
Marion Cartwright	Lake Forest Open Lands Association
Mary Mathews	Sierra Club
Matt Ueltzen	Lake County Forest Preserve District
Melanie Rummel	City of Lake Forest Environmental Sustainability Chair
Michele Mrachek	East Skokie Drainage District
Mike Prusila	Lake County Stormwater Management Commission
Patty Werner	Resident & East Skokie Drainage District Representative

North Branch Chicago River Watershed Workgroup Meeting Attendees

Name	Organization
Peter Nagle	Chicago Botanic Garden
Reagan Walsh	City of Lake Forest
Rob Flood	North Shore Water Reclamation District
Robyn Flakne	Village of Glenview
Susan Lenz	Lake Forest Open Lands
Tony Garcia	U.S. Environmental Protection Agency, Region 5

PDHs are self-reporting. If attendees want to apply NBWW meetings towards their professional license, keep the certificate, agenda, and minutes with sign-in sheets. Acceptance of these materials for credit is at the discretion of the licensing authority.

MS4 Program BMP fulfillment. If attendees want to apply NBWW meetings and education towards their MS4 Program BMP Measurable Goals, keep the certificate, agenda and minutes with sign-in sheets. Acceptance of these materials for MS4 program credit is at the discretion of the Illinois EPA.

Organization	Voting Member	Number of Present? (Y) Tot Votes C		Total Vote Count	Roll Call FY2023 Membership Dues	Yay Tallies for FY2023 Membership Dues	Roll Call FY2023 Budget	Yay Tallies for FY2023 Budget
Christopher Burke	Darren Olson	2	Y	2	Absent during roll call	0	Absent during roll call	0
City of Lake Forest	Brian Joyce	7	Y	7	Y	7	Y	7
East Skokie Drainage District	Larry Bridges	3	Y	3	Y	3	Y	3
Gewalt Hamilton	Karolina Cho	2	Y	2	Y	2	Y	2
Lake County SMC	Jacob Jozefowski	2	Y	2	Y	2	Y	2
Lake Forest Open Lands	Susan Lenz	2	Y	2	Y	2	Y	2
LCFPD - Unincorporated	Matt Ueltzen	2	Y	2	Y	2	Y	2
Libertyville Township	Damon Cederberg	3	Y	3	Y	3	Y	3
MWRDGC (Metropolitan Water	lustin Miele	2	N N	2	V	2	V	2
Reclamation District of Greater Chicago)	JUSTIN VICK	2	Ŷ	2	Y	2	Y	2
NSWRD Clavey Road WRF	Chuck Bodden	9	Y	9	Y	9	Y	9
Illinois Sierra Club	Mary Mathews	2	Y	2	А	0	A	0
Union One West Fork Drainage District	Susan Grinnell	3	Y	3	Y	3	Y	3
Village of Bannockburn	Karolina Cho	3	Y	3	N	0	Ν	0
Village of Deerfield	Brandon Janes	9	Y	9	Y	9	Y	9
Village of Glencoe	Dudley Onderdonk	3	Y	3	A	0	A	0
Village of Northbrook	Jack Bielak	7	Y	7	Y	7	Y	7
Village of Northfield	Karolina Cho	3	Y	3	A	0	A	0
Village of Riverwoods	Karolina Cho	3	Y	3	Y	3	Y	3
Village of Wilmette	Kate McDonnell	3	Y	3	Y	3	Y	3
Village of Glenview	Robyn Flakne	9	Absent during roll call	0	Absent during roll call	0	Y	9
TOTALS		164	19	70	14	57	15	66

SIGN-IN SHEET

NORTH BRANCH CHICAGO RIVER WATERSHED WORKGROUP GENERAL MEMBERSHIP MEETING

February 08, 2023 * 1:00 PM – 3:00 PM * Lake Forest Municipal Services Building

NAME	ORGANIZATION	E-MAIL	ARE YOU AN NBWW MEMBER? (Y/N)	IF YES, ARE YOU VOTING TODAY FOR YOUR AGENCY? (Y/N)
Josephine Meinike	NSWRD	TO menche Qroonthe hours word.on	×	\mathcal{N}
JANICE HULL	AULL NATUR PRESENCE	AUIMATURE Preservi gmalicen	Ω	
Michele Mrachek	LBOLA/ESDD	michelemrachelten	Malij	
Dudley Onderdank	Village of Glencoe	donderdonke comeant, net	Y	\sim
Cole Neder	CMAP	cheder @ cmapillinsis. 900		\mathcal{N}
BEN METZLER	CLARK DETZ/GREES OBVES	ben. Metzlereclas Kolietz.con	Y (LEEDERS O ANG)	\sim
Jim Anderson	Jos. Anderson 6	100mderkon@ 10Koemail	evision	\bigwedge
Jin Jabcon	Chicago Botanc Garde	j ab con @ chicagebotanic.c	g Yalmust	\mathcal{N}_{i}
Justin Ulch	MWKDGC	VICK- @ MWRY, oRG	Y	\searrow
JONATHAN HAPP	LIBERTYVILLE TOWNSHIP	Jhappe liberty villetown ship. us	1	1
Byron Kutz	Lake Forest	kutzb@city office forest	ncon Y	Y
Reagon Wath	Lake Bright	Walsh, @ cityof lake farst. 1	ion Y	\sim

SIGN-IN SHEET

NORTH BRANCH CHICAGO RIVER WATERSHED WORKGROUP GENERAL MEMBERSHIP MEETING

February 08, 2023 * 1:00 PM – 3:00 PM * Lake Forest Municipal Services Building

NAME	ORGANIZATION	E-MAIL	ARE YOU AN NBWW MEMBER? (Y/N)	IF YES, ARE YOU VOTING TODAY FOR YOUR AGENCY? (Y/N)
BRANDON JANES	DEERFICES	BIANBS QUESCICUS . IL.US	Y	У
Chuck Bodden	NSWRD	Choodden @northshorewrd.	7	У
Sasan Lenz	Lake FOREST OPEN Lands	slenz@lfola, org	Y	Y
Kate Madonnell	Wilmette	madonnellik @ wilmette.	\downarrow	Y
Rob Flood	NSWRD	roflood@north shorewrd.org	×	×
Larry Bridges	ESDD	Larryb 61 Qconcast	\succ	\checkmark
Karolina Cho	Genalt Hamilton Ass. Village of Riverwoods City of Nathbeld Village of	Kcho@gha-engineers.com	Ý	X
Peter Nagle	Chicago Botanic Gades	pragle Qchicagobotanic	es Almost	
Alana Bactolai	LCHD	ABARTULAIZO Laxeconmil. acu		
Marion Cartwrigte	residuat (LFOLA)	marion carting by 3 Privil- En		
Melanie Rummel	City of Lake Forest Environmental Sustainab /13/4 Ci	Rumanellaweabl, halv com		OVER

TIMMARY 149 CAOL. COM SIERRA CLUB MARY MATHEWS Party Werner Yes YES NO NO Katie Piotnowska Chicapo Metopolitan Agnay for Planning NO No na an israel 2.00

Biological and Water Quality Assessment of the North Fork Chicago River Watershed

Years 3 and 4 Rotation

West Fork Downstream Willow Rd. (WF23)

Skokie River Downstream I-94 (SR18)

North Branch Watershed Workgroup February 8, 2023

> Chris O. Yoder Midwest Biodiversity Institute Columbus, OH

Skokie River Upstream Half Day Rd. (SR4)

ork Upstream E. Lake Rd. (MF16)

Similar approach for the NBWW bioassessments in 2018-21

Chris O. Yoder Center for Applied Bioassessment and Biocrite Midwest Biodiversity Institute Columbus, OH

What is a Bioassessment?

- Bioassessment a systematic assessment of the aquatic resource using biological indicators AND chemical/physical indicators in a supporting role.
- Biocriteria numerical benchmarks for determining attainment of a goal expressed in the definition of an aquatic life designated use in the state WQS.
- Paired habitat and chemical/physical data at all sites supports broader data analysis and indicator development objectives - Integrated Prioritization System or "IPS".

Aquatic Life Uses

Definition:

A designation (classification) assigned to a waterbody based on the **potential** aquatic assemblage that can realistically be sustained given the regional reference condition and the level of protection afforded by the applicable criteria.

Aquatic Life Uses

ALUs inherently "drive" the determination of status & management responses, thus they are a critical determinant of overall program effectiveness. a latically be This underscores the critical importance and "reach" of aquatic life uses - they influence every aspect of water quality management.

Net-based methods (including kicks, dips, jabs, sweeps, & picks)

Grab.

samplers

IEPA methods for field collections & lab processing

Trib. to Po 5063510 10-140

STARX 35

STAR * 5

Fish are a widely identifiable component of aquatic systems and are valued for their recreational uses. Most species, however, are more obscure, and comprise the second most endangered group.

Illinois DNR "electric seine"

MBI pulsed D.C. electrofishing methods

FILLINESSES.

The Qualitative Habitat Evaluation Index (QHEI)

QHEI Includes Six Major Categories of Macrohabitat

- Substrate types, origin, quality, embeddedness
- Instream Cover types and quantity
- Channel Quality sinuosity, development, stability
- Riparian width, quality, bank stability & quality
- Pool/Run/Riffle depth, current types, embeddedness, morphology
- Gradient local gradient (fall per unit distance)

Source: The Qualitative Habitat Evaluation Index (Rankin 1989)

Chemical/Physical Field Procedures

Water column grab sampling

Depth integrated sampler

Automatic composite samplers

Time-of-travel dye injection

Chemical Effluent & Exposure Information

Whole Effluent Toxicity (WET) Testing is Performed Primarily on Effluents

Permitted Discharges are Sampled for a Variety of Chemicals - This Provides Data to Determine Pollutant Loads

Biochemical Markers (Biomarkers) are Useful for Discerning Problem Pollutants Fish Tissue Analysis Reveals Bioaccumulative Pollutants and Risks to Human and Wildlife Health

Chemical – excess nutrients from urban runoff and CSOs **Physical – extensively modified Biological – nuisance algal**

Energy cycling – short nutrient spirals

growth

stream habitat

Treating these independently will not solve the problem.

Mill Creek – Cincinnati, OH

A Data Driven Framework

Ambient M&A and other data that includes:

- Biological Assemblages (at least two)
 - Evaluate aquatic life status (IL General Use)
 - Evidence of response to stressor types

• Water and Sediment Chemistry Data

- Compare to biocriteria based thresholds
- Compare to regional reference benchmarks
- > Evaluate efficacy of current water quality criteria
- > Effluent loadings to gauge impact of point sources

• Habitat Data

- > Key limiting factor to biota can eclipse other factors
- Key determinant of use attainability
- GIS and Flow Data
 - > Expressions of land use for potential impacts and limitations on the biota
 - > Effects of hydrological modifications proxy indicators (Hydro QHEI)

Completing the Cycle of WQ Management: Managing for Environmental Results

Indicator Levels

- 1: Management actions
- 2: Response to management
- 3: Stressor abatement
- 4: Ambient conditions
- 5: Assimilation and uptake
- 6: Biological response

Administrative Indicators [permits, plans, grants, enforcement]

Stressor Indicators [pollutant loads, land practices]

Exposure Indicators [pollutant conc., habitat, ecosystem process, fate & transport]

Response Indicators [biological assemblage indices, other attributes]

"Ecological Health" The Endpoint of Concern

Biological and Water Quality Assessment of the North Branch Chicago River: 2020-21

Trent A. Dougherty, Executive Director James B. Lane, Board President

North Branch Watershed Bioassessment Report

- Full analysis of all 2020-21 data.
- Aquatic life use attainment including causes and sources enhanced by IPS model thresholds and tool updates.
- "Combined" assessment for nutrient enrichment – modified SNAP procedure updated.
- Restorability factors calculated per NE Illinois IPS model and all data added to Power BI platform.
- Expect a draft for review by February 13, 2023.

North Branch Watershed Bioassessment

- Two year cycle: 25 sites total 11 sites 2018; 14 sites 2019; <u>repeated in 2020-21</u>.
- Each site assigned a consistent site code (e.g., SR18).
- Each sampled for fish, macroinvertebrates, and habitat by MBI.
- Continuous parameters (D.O., pH, temperature, conductivity) and benthic chlorophyll a by MBI at 20 sites.
- Water chemistry sampling and analysis by NBWW at all sites annually.
- Employ 3 crews over a June-October seasonal index period.
- Followed IEPA methods to ensure data consistency and usefulness of results.
- 2020-21 draft for review next week.

Integrated Prioritization System (IPS) for **Northeastern Illinois: Technical Documentation**

Peter A. Precario, MBI Executive Director James Lane, MBI Board President MBI/2020-5-10

Report citation:

NE Illinois IPS Documentation

August 31, 2022

Midwest Biodiversity Institute (MBI). 2022. Integrated Prioritization System (IPS) for Northeastern Illinois: Technical Documentation and Atlas of Stressor Relationships. Technical Report MBI/2020-5-10. Project Number 10180900. Columbus, OH 43221-0561. 157 pp. + appendices.

Sponsoring Organizations:

Ortions of this document were made possible by a generous grant from ESRI. The GIS elements of this report were also made possible by a grant from ESRI.

ILLINOIS LEVEL III AND LEVEL IV ECOREGIONS

User Manual for the Northeastern Illinois Integrated Prioritization System (NE IL IPS) and Data Exploration Tool (Version 1.1)

NE Illinois IPS: Power BI Dashboard & User Manual

- All data is housed in a Power BI platform or "dashboard".
- Allows a user to examine assessed data such as use attainment status and associated causes & sources of impairment.
- Biological effect thresholds for assessing risk of existing and new impacts of use attainment.
- Scaled to five narrative categories.
- Restorability factors for impaired sites.
- Susceptibility and Threat factors for attaining sites.
- Need to schedule hands on training for the collective watershed groups.

Peter A. Precario, Executive Director James E. Lane, Board President

Stressor an St	d Response Vari andardized Scal	iables (0-10 e)	Restorability, Susceptibility and Threat Score Ranges (0-100 Range)					
Narrative Condition	Equivalent "Use Class"	Stressor Ranks	Restorability	Susceptibility	Threatened			
Excellent	Exceptional	0.1-2.0	Not assigned to	Very Lov	v (0-20)			
Good	General Use	>2.0-4.0	attaining sites	Low (>20-40)				
Feir			V. High (>80)					
Fair	woamea Use	>4.0-0.0	High (>60-80)					
Poor	Limited Use	>6.0-8.0	Intermediate (>40-60)	Not assigned site	Not assigned to impaired sites			
			Low (>20-40)					
Very Poor	None	>8.0	V. Low (<20)					

Evaluating Chemical Results: WQC & Threshold Effects

	Water Qua	lity Criteria		Effect TI	Non-effect Benchmarks							
Parameter	IL Chronic	IL Acute	Ohio EPA	SW Ohio	NOAA SQRT	Other	Regional Reference	IL Non- Standard				
Demand Group												
BOD ₅	NA	NA		2.48 mg/L [HW Streams] 2.96 mg/L [WD Streams]			2.00 mg/L [HW Streams]					
		-	-		-							
Dissolved Oxygen (D.O.)	ese mg/L [7-day		e be 7.2 mg/c [mw Streams]		bole	ied v	ر <mark>ائی (آل)</mark> o.6 mig/L [miv Streams]) <mark>e</mark>				
CUIT	entl	y or	n <mark>iog</mark> i)g IP	S ¹ d	evel	<mark>opm</mark>	ent				
Suspended Solids (TSS)	NA	NA	16.0 mg/L [HW Streams]	70.8 mg/L [WD Streams] 74.3 mg/L [BT Rivers]			28.0 mg/L [HW Streams]					
			Nu	trients Group)							
Ammonia-N (NH ₃ - N)	1.24 mg/L [pH 8.0/25°C]	8.40 mg/L [pH 8.0/25°C]	0.05 mg/L [HW Streams]	0.31 mg/L [HW Streams]		0.15 mg/L [DRSCW IPS]	0.025 mg/L [HW Streams]					
Total Kjeldahl Nitrogen (TKN)	NA	NA	0.50 mg/L [HW Streams]	0.51 mg/L [HW Streams] 0.58 mg/L [WD		1.00 mg/L [DRSCW IPS ¹¹]	0.70 mg/L					

NE IL IPS Biological Effect Thresholds: Chemical Parameters

								Thresholds by Na	gory	Reference Site	Refer-		
Parameter			Parameter	Limiting								Values (Median-2X	ence
Code	Variable Name	Units	Group	Assemblage	FIT Score	Sample N	Excellent	Good	Fair	Poor	Very Poor	IQR)	Site N
P665	Total Phosphorus	mg/L	Nutrients	Fish	0.04	1464	<u><</u> 0.106	>0.106	>0.277	>1.002	>1.726	0.088 (0.062-0.115)	35
P94	Conductivity	μS/cm	Ionic	Fish	0.05	1464	<u><</u> 739	<u>></u> 739	>1038	>1208	>1378	922 (705-1158)	40
P70300	Total Dissolved Solids	mg/L	Ionic	Fish	0.10	1464	<u><</u> 453.8	>453.8	>558.0	>651.2	>744.5	614 (512-664)	28
DO_MIN	Minimum DO	mg/L	Demand	Macros	0.10	985	>8.0	<u>></u> 6.5	>5.47	<4.44	<3.4	8.6 (6.5-9.6)	29
P625	Total Kjeldahl Nitrogen	mg/L	Demand	Macros	0.14	985	<u><</u> 1.07	>1.07	>1.12	>1.63	>2.14	0.74 (0.30-0.99)	30
P940	Chloride, Total	mg/L	Ionic	Fish	0.17	1464	<u><</u> 40.00	>40.00	>120.0	>184.9	>249.8	154 (80.3-171.3)	33
P299	Mean Dissolved Oxygen	mg/L	Demand	Macros	0.21	985	<u>></u> 9.42	<9.42	<9.25	<6.11	<3.05	8.6 (7.9-9.0)	40
P310	BOD (5-Day)	mg/L	Demand	Macros	0.21	985	<u><</u> 1.30	>1.30	>2.35	>3.45	>4.54	2 (2.0-2.2)	27
P610	Total Ammonia	mg/L	Nutrients	Macros	0.28	985	<u><</u> 0.084	>0.084	>0.100	>0.190	>0.280	0.1 (0.10-0.10)	34
P630	Nitrate-N	mg/I	Nutrients	Fish	0.29	1464	<3.767	>3.767	>5.045	>7.344	>9.643	0.39 (0.29-0.97)	32
P929	Sodium Total		lonic	Fish	0.29		_<16275	>16275	>45000	≥79056	>113112	14200 (10375-22500	21
P530	Total Susper ded		Shr			201		non time) <u>oric</u>		S DAL	9.2 (5.4-20.3)	33
P615	Nitrite-N 🕽 🕽 🕽		SING		191	56			1276			0.01 (0.01-0.01)	27
DO_MAX	Maximum DO											8. 74 (8.21-9.45)	29
P82078	Turbidity		Demand	Macros		0.95		bittot-) 19.:	>25.0		11.0 (4.5-24.5)	7
P549	Volatile Suspended Soli	50		OUN					<u> </u>			6.0 (4.8-7.4)	5
P945	Sulfate, Total		lome									74.6 (61.8-81.8)	4
P937	Potassiurn, Total		Ionic	Macros	10.73	985	<u><</u> 3158	>3158	>6300	>718		240 <mark>0 (1574-2817)</mark>	21
P916	Calcium, Total		Ionic			S147	50			6 813		54,000 (80-74,250)	21
						Met	als and Tox						
P1092	Zinc, Total	μg/L	Metal_Tox	Fish	0.13	1464	<u><</u> 7.47	>7.47 <mark>[55.5]</mark>	>9.78	>11.00	>12.22 [309.7]	2.0 (2.0-7.0)	23
P1027	Cadmium, Total	μg/L	Metal_Tox	Fish	0.93	1464	<u><</u> 0.937	>0.937 [2.70]	>0.974	>0.983	>0.991 [33.63]	<mdl (0.17)<="" td=""><td>23</td></mdl>	23
P1042	Copper, Total	μg/L	Metal_Tox	Fish	1.75	1464		<u><</u> 4.480 [CS: 18.65]	>4.480	>4.969	>5.458 [AS: 30.1]	2.00 (1.96-4.15)	22
P1051	Lead, Total	μg/L	Metal_Tox	Macros	2.11	985	<u><</u> 2.851	>2.851 [CS; 18.0]	>3.335	>3.884	>4.434 [AS: 343]	0.24 (0.20-0.57)	23
P1082	Strontium	μg/L	Metal_Tox	Fish	2.69	1464	<u><</u> 169.1	>169.1	>190.8	>280.4	>370.1	150 (135-181)	21
P1055	Manganese, Total	μg/L	Metal_Tox	Macros	2.74	985	<u><</u> 53.71	>53.71 [CS: 3319]	>77.03	>107.1	>137.2 [AS: 7808]	32.0 (24.1-38.2)	23
P1067	Nickel, Total	μg/L	Metal_Tox	Macros	3.26	985		<u><</u> 3.470 [CS: 103.6]	>3.470	>9.585	>15.70 [AS: 932]	5.0 (1.5-21)	14
P1105	Aluminum, Total	μg/L	Metal_Tox	Fish	4.54	1464	<u><</u> 310.0	>310.0	>393.3	>560.2	>727.0	200 (128-449)	21
P1007	Barium, Total	μg/L	Metal_Tox	Fish	4.77	1464	<u><</u> 74.1	>74.09	>84.88	>101.8	>118.6	56.3 (44.3-64.7)	21
P720	Cyanide, Total	μg/L	Metal_Tox	Macros	5.17	985	<u><</u> 8	>8 [CS: 5.2]	>10	>10	>10 [AS: 22]	3 (2-10)	6
P1002	Arsenic	μg/L	Metal_Tox	Macros	9.19	985		<u><</u> 3.616 [CS: 190]	>3.455	>5.029	>6.603 [AS: 360]	Insufficient Data	
P1034	Chromium, Total	μg/L	Metal_Tox	Fish	10.17	1464	<u><</u> 1.398	>1.398 [CS: 167]	>1.540	>2.682	>3.824 [AS: 3503]	1.73 (1.30-2.00)	6

CS - Illinois WQS chronic standard equated to Good; AS - Illinois WQS acute standard equated to Very Poor.

										Total	Chloro-	Total	Volatile		Specific
		Drainage			Conduct-		Ammonia-			Phos-	phyll a,	Suspend-	Suspend-		Conduct-
	River	Area	Tempera-		ivity	D.O.	N	Nitrate-N	TKN	phorus	Sestonic	ed Solids	ed Solids	Chloride	ance
Site ID	Mile	(sq. mi.)	ture (°C)	pH (S.U.)	(µS/cm)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(ug/L)	(mg/L)	(mg/L)	(mg/L)	(µS/cm)
							Skokie	River - 2020							
SR1	21.1	2.7	22.6	7.09	1438	5.6	0.12	0.02	0.86	0.006	7.1	11	1.0	356	1438
SR2	17.4	7.8	21.9	7.48	1390	6.3	0.13	0.14	0.40	0.006	2.7	9	1.0	279	1390
SR3	14.8	11.5	21.8	7.54	1054	7.0	0.12	0.20	0.71	0.006	1.3	11	1.0	203	1054
SR4	11.3	15.0	22.0	7.76	1085	7.7	0.05	0.22	0.59	0.006	0.7	8	1.0	179	1085
SR5	8.0	20.6	22.3	7.65	1006	6.2	0.06	0.45	0.97	0.006	3.1	6	1.0	168	1006
SR6	7.4	21.5	22.9	7.67	983	6.3	0.12	0.49	0.88	0.006	1.5	7	1.0	167	983
SR7	3.0	23.7	25.1	7.85	844	7.5	0.06	0.64	1.46	0.120	25.0	14	4.5	149	844
SR18	0.5	30.9	23.5	7.70	868	7.1	0.06	6.18	1.33	0.320	18.0	14	3.5	140	868
				-			Skokie	River - 2021		-					
SR1	21.1	2.7	20.0	7.23	1030	8.1	0.11	0.19	0.64	0.006	1.0	11	2.0	222	1030
SR2	17.4	7.8	19.7	7.15	1661	8.1	0.06	0.30	0.82	0.006	0.4	8	1.0	452	1661
SR3	14.8	11.5	19.6	7.43	1499	9.0	0.08	0.30	0.76	0.006	0.4	5	1.0	406	1499
SR4	11.3	15.0	19.9	7.37	1505	9.1	0.08	0.29	0.95	0.006	0.2	5	1.0	395	1505
SR5	8.0	20.6	20.6	7.47	1565	8.2	0.15	0.45	1.18	0.093	7.6	6	1.0	386	1565
SR6	7.4	21.5	21.0	7.49	1549	8.0	0.15	0.45	1.55	0.078	0.5	7	1.0	398	1549
SR7	3.0	23.7	24.8	7.64	1294	7.5	0.18	1.03	2.09	0.170	23.0	12	1.0	331	1294
SR18	0.5	30.9	22.4	7.14	1181	8.2	0.13	11.00	1.55	0.620	2.3	19	4.5	254	1181
				-		Middle F	ork North Br	anch Chicag	o River - 20	20		-	-		
MF8	21.1	5.8	24.8	7.29	1504	7.0	0.07	0.02	0.62	0.006	4.9	15	4.5	334	1504
MF9	18.9	8.9	24.5	7.28	1328	8.0	0.07	0.02	0.45	0.058	2.2	24	3.0	297	1328
MF10	16.7	11.9	24.3	7.43	1167	7.7	0.06	0.06	0.72	0.006	1.2	10	2.0	228	1167
MF11	14.1	16.1	24.6	7.56	915	9.1	0.05	0.02	0.95	0.006	0.4	23	4.0	165	915
MF12	10.8	19.2	24.7	7.55	905	7.8	0.01	0.02	0.92	0.006	0.6	8	1.0	166	905
MF13	8.6	21.0	24.9	7.42	887	8.0	0.06	0.09	1.46	0.006	0.8	10	3.5	170	887
MF14	6.0	22.5	24.1	7.63	961	8.9	0.01	0.02	1.51	0.006	0.8	8	1.5	182	961
MF15	4.0	24.3	25.0	7.57	909	8.8	0.09	0.02	0.97	0.006	0.3	17	3.0	172	909
MF16	3.0	56.1	22.5	7.49	960	7.2	0.09	5.88	2.15	0.390	3.5	18	2.0	176	960
MF17	1.8	57.3	23.5	7.49	911	6.8	0.18	6.67	1.29	0.325	3.5	15	2.0	151	911
						Middle Fo	ork North Br	anch Chicag	o River - 20	21					
MF8	21.1	5.8	22.1	6.99	2865	5.7	0.08	0.02	1.36	0.110	3.8	11	1.0	773	2865
MF9	18.9	8.9	21.0	7.11	2665	4.7	0.07	0.02	1.32	0.130	5.8	14	1.0	700	2665
MF10	16.7	11.9	23.5	7.20	1969	5.3	0.06	0.02	1.56	0.063	1.6	6	1.0	555	1969
MF11	14.1	16.1	23.0	7.05	1845	5.4	0.06	0.02	1.33	0.073	4.1	13	1.0	505	1845
MF12	10.8	19.2	22.4	7.33	1847	4.4	0.06	0.09	1.06	0.068	2.1	6	1.0	522	1847
MIF13	8.6	21.0	22.2	7.18	1912	6.1	0.12	0.16	1.09	0.150	0.9	8	2.0	541	1912
MF14	6.0	22.5	21.2	7.49	1832	7.5	0.07	0.17	1.30	0.115	0.4	5	1.0	518	1832
IVIF15	4.0	24.3	21.8	7.62	1/52	8.3	0.13	0.35	1.01	0.063	1.4	5	1.0	490	1/52
MIF16	3.0	56.1	24.1	7.07	1290	8.3	0.08	13.85	1.47	0.705	3.2	25	1.0	284	1290
MF17	1.8	57.3	24.1	7.24	1299	8.0	0.19	13.25 <3.77	1.74	0.760	1.7	19	2.5 <5.00	287	1299
		Good	29.4		<1038	>6.0	<0.084	<5.05	<1.07	<0.277	<5.1	<31.6	<7.76	<120.0	<1038
Conditio	n Category	Fair	31.7		<1208	>5.6	<0.190	<7.34	<1.63	<1.020	<13.8	<35.2	<9.83	<184.9	<1208
Thre	snolas	Poor	32.2		<1378	>4.4	<0.280	<9.64	<2.14	<1.730	<28.9	<38.7	<11.88	<249.8	<1378
		Very Poor	36.0		>1378	<4.4	<u>></u> 0.280	<u>></u> 9.64	<u>></u> 2.14	<u>≥</u> 1.730	>28.9	>38.7	>11.88	<u>></u> 249.8	>1378
So	urce	IPS	IL/OH WQS		IPS	IPS	IPS	IPS	IPS	IPS	MBI/NSAC	IPS	IPS	IPS	IPS

Chemical Threshold Exceedances

- Based on IPS threshold exceedances.
- Scaled to five narrative categories.
- Arranged upstream/ downstream reveals "pollution profiles".
- Some results affected by flow hydrograph – 2021 ionic strength variable exceedances more severe in 2021.
- Point source influence for N and P.
- Numerous NPS effects.

										Total	Chloro-	Total	Volatile		Specific
		Drainage			Conduct-		Ammonia-			Phos-	phyll a,	Suspend-	Suspend-		Conduct-
	River	Area	Tempera-		ivity	D.O.	N	Nitrate-N	TKN	phorus	Sestonic	ed Solids	ed Solids	Chloride	ance
Site ID	Mile	(sq. mi.)	ture (°C)	pH (S.U.)	(µS/cm)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(ug/L)	(mg/L)	(mg/L)	(mg/L)	(µS/cm)
West Fork North Branch Chicago River - 2020															
WF20	12.5	3.9	23.2	7.33	800	8.3	0.14	0.11	1.36	0.173	3.0	12	1.0	147	800
WF21	10.4	7.0	25.7	7.27	872	7.8	0.15	0.07	1.96	0.006	1.3	8	1.0	183	872
WF22	9.2	9.4	25.6	7.51	1047	10.0	0.13	6.70	2.15	1.285	4.1	10	3.0	210	1047
WF23	4.9	17.9	26.1	7.59	1101	9.3	0.13	3.64	1.77	0.665	4.2	20	4.5	221	1101
WF24	2.9	24.5	25.0	7.59	1177	8.1	0.34	2.71	1.72	0.460	2.2	7	3.0	236	1177
WF25	1.3	28.0	26.7	7.64	1172	8.1	0.29	2.53	0.87	0.470	1.0	6	1.0	243	1172
West Fork North Branch Chicago River - 2021															
WF20	12.5	3.9	22.7	6.98	1379	4.8	0.15	0.13	1.72	0.235	10.0	20	3.5	357	1379
WF21	10.4	7.0	22.7	6.92	1566	3.7	0.30	0.37	1.52	0.225	1.2	9	2.5	418	1566
WF22	9.2	9.4	23.0	7.16	1142	5.9	0.35	7.40	2.05	2.065	2.9	17	2.0	232	1142
WF23	4.9	17.9	24.8	8.02	1478	9.7	0.19	3.37	1.69	0.735	24.0	60	5.0	283	1478
WF24	2.9	24.5	23.3	7.46	1699	6.3	0.38	1.92	1.62	0.515	6.7	18	1.0	323	1699
WF25	1.3	28.0	23.7	7.19	1347	6.3	0.28	2.28	1.49	0.435	1.7	15	1.5	312	1347
						No	rth Branch C	Chicago Rive	r - 2020						
MF19	18.6	93.4	24.4	7.62	944	7.5	0.14	5.02	1.42	0.305	1.0	13	1.0	166	944
						No	rth Branch C	Chicago Rive	r - 2021						
MF19	18.6	93.4	25.8	7.24	1380	8.5	0.14	11.75	2.19	0.600	2.4	15	1.0	349	1380
		Excellent	25.0		<739	>8.0	<0.084	<u><</u> 3.77	<1.07	<u><</u> 0.106	<2.5	<u><</u> 17.5	<u><</u> 5.00	<40.0	<739
Conditio	n Category	Good	29.4		<1038	>6.5	<0.100	<5.05	<1.12	<0.277	<5.1	<31.6	<7.76	<120.0	<1038
Thre	sholds	Fair	31.7		<1208	>5.6	<0.190	<7.34	<1.63	<1.020	<13.8	<35.2	<9.83	<184.9	<1208
		Very Poor	36.0		>1378	>4.4	>0.280	>9.64	>2.14	>1.730	>28.9	<38.7	>11.88	>249.8	>1378
So	urce	IPS	IL/OH WQS		IPS	IPS	IPS	IPS	IPS	IPS	MBI/NSAC	IPS	IPS	IPS	IPS

The West Fork had the most poor and very poor exceedances across 10 parameters, most (not all) emanating for the upstream sites

Bacteria (E. coli) R

U.S. EPA criteri

Geometric Mean: 126 cfu Maximum STV: 410 cfu/1

			Drainage									
		River	Area			Geometric	Maximum					
	Site ID	Mile	(sq. mi.)	Samples	Minimum	Mean	STV					
	SR1	21.1	2.70	6	9	193	1550					
	SR2	17.4	7.80	6	59	203	512					
	SR3	14.8	11.50	6	65	158	361					
eria (<i>E. Coll)</i> Results	SR4	11.3	15.00	6	228	591	2420					
	SR5	8.0	20.60	6	125	297	548					
	SR6	7.4	21.50	6	150	386	980					
	SR7	3.0	23.70	6	3	34	210					
	SR18	0.5	30.90	6	26	301	816					
U.S. EPA criteria:	Skokie River - 2021											
	SR1	21.1	2.70	4	16	102	649					
	SR2	17.4	7.80	4	66	265	2420					
trie Maan, 126 efu /100 ml	SR3	14.8	11.50	4	62	133	488					
the wear: 126 clu/100 mL	SR4	11.3	15.00	4	91	154	265					
um STV· 410 cfu/100 ml	SR5	8.0	20.60	4	52	120	613					
	SR6	7.4	21.50	4	41	153	613					
	SR7	3.0	23.70	4	13	84	365					
	SR18	0.5	30.90	4	116	447	1990					
While interaded		C C C C		e For <mark>eNor</mark> h	Branch chi yao	River - 2020						
		シシニシ										
	MF9	18.9		4	33	95	1130					
contact it is also				- <mark>ind</mark> i	cator							
						0120159						
	INIF12	10.8	19.23	4			5480					
<u>incemprice</u>	CHI	ite n	<u>ossin</u>		nn se		2610					
						2112921	5170					
	IVIF15	1.0	Z4.29	<u> </u>	600	240	2420					
	IVIF16	3.0	56.10	<u></u> б	62	349	2420					
		1.8	57.30	Ø	ŏŏ	285	2420					
N Br Chicago R at Niles, IL

River Mile

River Mile

Illinois EPA Fish Index of Biotic Integrity

Table 3. Ten metrics selected for inclusion in revised Illinois IBIs. Metrics in **bold type** are new to Illinois IBIs; four others are slight variants of previous metrics.

Metric Name

Description

Species-richness	s metrics
	Number of native fish species Neber 2021 sise of 0 gigs assemblages
NSUN	Number of native suntish species (i.e., in family Centrarchidae)
DEND	meet the State's aquatic life use
NBINV Trophic- or repro	Number of native benthic invertivore species
SBI	Proportion of individuals of species that are specialist benthic invertivores
GEN	Proportion of individuals of species that are generalist feeders
LITOT	Proportion of individuals of species that are obligate coarse-mineral-substrate spawners and not "tolerant" (i.e., excludes creek chub and white sucker)

Tolerance metric**PRTOLProportion of tolerant species**

Aquatic Life Use Status: 2020-21

										IPS		
		Drain-								Restora-		
	Fish RM/	age Area				Aq. Life				bility		
Site ID	Macro RM	(sq. mi.)	fIBI	mIBI	QHEI	Status	Very Poor	Poor	Fair	Ranking	IEPA Causes	
					•			Skokie River - 202	20			
SR1	21.10/21.10	2.78	5.0	17.2	37.0	Non - Poor	Dev-WS; Substr; Chloride;	Low DO; QHEI; Chan; Conduct;	TKN; PAHs;	7.9		
SR2	17.40/17.40	7.87	16.5	23.8	38.0	Non - Poor	Dev-WS; Chloride;	QHEI; Substr; Chan;	Low DO; Max DO; Conduct; Turbidity; Sed. Metals;	24.0		
SR3	14.80/14.80	11.56	23.0	24.6	48.0	Non - Fair		Dev-WS; QHEI; Substr; Chloride;	-WS; QHEI; Substr; Chloride; Low DO; Max DO; Chan; Conduct; Turbidity; PAHs; Sed. Metals;			
SR4	11.30/11.30	15.07	17.5	22.8	52.5	Non - Poor	Dev-WS;	Chloride;	vride; Max DO; QHEI; Substr; Chan; Conduct; PAHs;			
SR5	8.00/8.00	20.67	23.5	21.2	46.8	Non - Fair	Dev-WS; Substr;	QHEI; Chan;	Low DO; TKN; Max DO; Conduct; Chloride; Turbidity; PAHs; Sed. Metals;	20.1		
SR6	7.40/7.40	21.51	18.0	21.3	39.5	Non - Poor	Dev-WS; Substr;	Low DO; QHEI; Chan;	Imperv-30C; Max DO; Conduct; Chloride; PAHs;	20.4		
SR7	3.00/0.00	23.73	15.0	NA	38.0	Non - Poor	Dev-WS; Substr;	QHEI; Chan;	Low DO; TKN; BOD; Max DO; Chloride; Turbidity; Sed. Metals;	29.2	TSS, Mercury	
SR18	0.50/0.50	30.90	34.5	40.8	62.6	Non - Fair	Dev-WS;	Substr;	TP; TKN; Nitrate; Max DO; QHEI; Chan; Chloride; PAHs;	51.4	Algae, Chlordane, CoverLoss, FlowMod, HabAlt, N, Sed/Silt, TP	
								Middle Fork North Branch Chico	ago River - 2021			
MF8	21.10/21.10	5.81	13.0	17.5	29.0	Non - Poor	Substr; Conduct; Chloride;	Dev-WS; Low DO; QHEI; Chan;	TKN; PAHs;	19.2		
MF9	18.90/18.90	8.91	14.0	24.0	31.5	Non - Poor	Substr; Conduct; Chloride;	Low DO; QHEI; Chan;	Dev-WS;	12.5		
MF10	16.70/16.70	11.99	12.0	41.1	41.0	Non - Poor	Conduct; Chloride;	Dev-WS; Low DO; QHEI; Substr; Chan;	TKN; Max DO;	19.3	Chloride.	
MF11	14.10/14.10	16.13	20.0	21.5	44.0	Non - Fair	Conduct; Chloride;	Dev-WS; Low DO; QHEI; Substr; Chan;	TKN;	21.8	DDT, DO, HabAlt,	
MF12	10.80/10.80	19.23	15.0	34.0	45.5	Non - Poor	Chloride;	Dev-WS; Low DO; QHEI; Substr; Chan; Conduct;		23.6	Cause Unknown, Hexachlorobenzene,	
MF13	8.60/8.60	20.97	13.0	15.7	60.0	Non - Poor	Conduct; Chloride;	Dev-WS; Low DO; Substr;	Max DO; QHEI; Chan;	25.5	Sed./Silt, TSS	
MF14	6.00/6.00	22.48	15.0	39.5	64.5	Non - Poor	Conduct; Chloride;	Dev-WS;	Low DO; TKN; Max DO; QHEI; Substr; Turbidity; Sed. Metals;	38.7		
MF15	4.00/4.00	24.29	17.0	21.4	55.5	Non - Poor	Conduct; Chloride;	Dev-WS; Substr;	Max DO; QHEI; Chan;	34.6		
MF16	3.00/3.00	56.15	21.0	24.7	38.5	Non - Fair	Substr;	Dev-WS; TKN; QHEI;	TP; Low DO; Nitrate; Max DO; Chan; Chloride; Turbidity; PAHs; Sed. Metals;	20.0	Cr, DDT, Endrin, Hexachlorobenzene,	
MF17	1.80/1.80	57.31	16.5	25.2	45.8	Non - Poor		Dev-WS; QHEI; Substr; Chan;	TP; Low DO; Nitrate; Max DO; Chloride; Turbidity; PAHs; Sed. Metals;	21.9	Merury, Phosphorus, TSS	
								West Fork North Branch Chicag	go River - 2021			
WF20	12.50/12.50	3.90	7.0	10.6	30.5	Non - Poor	Substr; Chloride;	Dev-WS; Low DO; QHEI; Chan; Conduct; TSS;	TP; TKN; BOD;	1.9		
WF21	10.40/10.40	7.02	11.0	18.7	42.0	Non - Poor	Chloride;	Dev-WS; Low DO; BOD; QHEI; Chan; Conduct;	TKN; Substr; PAHs;	14.6		
WF22	9.20/9.20	9.41	9.0	15.8	46.5	Non - Poor	Dev-WS;TP; Chloride;	TKN; BOD; QHEI; Substr; Chan; Conduct;	Imperv-30C; Low DO; Nitrate; Turbidity; PAHs; Sed. Metals;	1.4	Aldrin, Cause Unknown, DDT, Endrin,	
WF23	4.90/4.90	17.86	9.0	13.8	41.0	Non - Poor	Dev-WS; Substr; Chloride;	Imperv-30C; BOD; QHEI; Chan; Conduct; TSS;	TP; TKN; Max DO; VSS; PAHs;	7.8	Hexachlorobenzene, Phosphorus, TSS	
WF24	2.90/2.90	24.52	10.0	21.0	66.0	Non - Poor	Dev-WS; Chloride;	Low DO; Conduct;	Imperv-30C;TP; TKN; BOD; QHEI; Substr; Chan; PAHs;	18.6		
WF25	1.30/1.30	27.97	12.0	21.9	48.0	Non - Poor	Dev-WS; Chloride;	Low DO; BOD; QHEI; Substr; Conduct;	TP; TKN; Chan; PAHs;	16.6		
								North Branch Chicago Riv	ver - 2020			
MF19	18.60/18.60	93.41	13.0	21.4	48.5	Non - Poor	Dev-WS;	Imperv-30C; QHEI; Substr;	TP;Low DO;TKN;Nitrate;Max DO;Chan;Conduct;Chloride;VSS;Turbid.;PAH; Sed. Metals;	28.3	Aldrin, Cause Unknown, DDT, FlowMod.,	
		Excellent	<u>></u> 50	>73	≥84.5	FULL				Very High	nexacinorobelizene, Priosphorus, N, 133	
	Narrative	Good	>41-49	41.8-72.9	75.9-84.0	FULL				High		
	Thresholds	Fair	30-<41 >15-29	30-41.7	50.1-75.0 25-50	PARTIAL NON-Eair				Moderate	2022 Integrated Report	
		Very Poor	<u><</u> 15	<u><15</u>	<25	NON-Poor				Very Low		
	Source(s)	IPS	IEPA/IPS	IEPA/IPS	IPS	IPS				IPS		

River Mile

River Mile

Stream Nutrient Assessment Procedure (SNAP)

Includes benthic chlorophyll & diel D.O. data – added to P, N, & biocriteria as combined assessment of *nutrient*

effects.	
----------	--

Notes:	Crew Leader:
Picture Taken? Y/N	GPS Unit Lat: 42.1
Time Set: C+.	556 Serial #
Temperature: Dissolved Oxygen: pH: Sp. Conductivity:	- Chlorophyll:A # rocks

Continuous D.O. Exceedances Results

- 65 total exceedances of
 3.5 mg/L minimum and
 4.0 mg/L 7-day average
 standard in 2020-21
- Up from 47 in 2018-19.
- Seven sites exceeded IPS maximum D.O.
- 15 of 19 sites had poor or very poor diel swings.
- Likely causes are excess
 D.O. demand from NOS inputs coupled with low flows and increased retention time.

Modified Stream Nutrient Assessment Procedure (SNAP)

														Contin-		Contin-		Max.				Seston-							
		Dusinger										Mean		uous		uous		Diel		Benthic		ic	Sesto						
		Drainage		(10)				0.1151	AQLU	Mean	Total	Nitrate-		Max.	Max.	Min	Min.	D.O.	Diel	Chioro-		Chloro-	n-ic	Mean	-	Mean	-	Total	Overall
Cite ID	River	Area	601	TIBI		miBi		QHEI	Attainment	1P (ma(1)	P	N (NO ₃ -N	D.O.	D.O.	D.O.	D.O.	Swing	Swing	pnyll a	BCni a	pnyll a	Chi a	155	155		TKN	SNAP	Enrichment
Site ID	wille	(mi.)	пы	Score	шві	Score	QHEI	Score	Status	(mg/L)	Score	(mg/L)	Score	(mg/L)	Score	(mg/L)	Score	(mg/L)	Score	(mg/m)	Score	(µg/L)	Score	(mg/L)	Score	(mg/L)	Score	Score	Status
602	14.80	11 5	22.0	7.0	24.00	7.0	49.0			0.000	0.0	0.20			1 0	20	1 Г		10.0	41.0	1.0	1 22		12.0		0.00	0.0		Enriched
SK3	14.80 <u> <u> </u> </u>	20.6	23.0	7.0	24.60	7.0	40.0	5.0	NON Fair	0.006	0.0	0.20	0.0	10.95	1.0	2.05	1.5	5.9 5.2	7.0	41.0	1.0	2.00	1.0	12.0	0.0		1.0	60.5	Enriched
SR7	3.00	20.0	15.0	10.0	21.20	7.0	38.0	5.0	NON - Poor	0.000	0.0	0.41	0.0	7.42	0.0	0.97	2.0	6.5	10.0	/5.2	1.0	32.40	10.0	15.8	0.0	1.13	1.0	61.0	Enriched
SR18	0.50	30.9	34.5	3.0	40.80	3.0	41.5	5.0	NON - Fair	0.006	0.0	8.53	1.5	8.03	0.0	3.78	1.5	3.8	10.0	94.3	3.0	15.88	7.0	17.5	0.5	1.15	1.0	73.5	Likely Nutrients
51(10	0.50	50.5	34.3	0.0	+0.00	0.0		5.0		0.000	0.0	Middle	Fork N	orth Bra	nch Chi	caao Rive	er 2020	5.0	1.0	54.5	0.0	13.00	7.0	17.5	0.5	1.40	1.0	/ 3.5	Likely Wathents
MF17	1.80	57.3	16.5	7.0	25.20	7.0	45.8	5.0	NON - Poor	0.006	0.0	8.13	1.5	5.69	0.0	3.09	1.5	2.5	1.0	56.4	1.0	3.66	1.0	13.8	0.0	1.12	1.0	74.0	Likely Nutrients
							•					Middle	Fork N	orth Brai	nch Chi	cago Rive	er 2021												
MF8	21.10	5.81	13.0	10.0	17.50	7.0	29.0	5.0	NON - Poor	0.107	1.0	0.10	0.0	19.03	6.0	1.35	2.0	17.7	10.0	28.0	0.0	7.94	3.0	17.8	0.5	1.69	1.5	54.0	Highly Enriched
MF9	18.90	8.91	14.0	10.0	24.00	7.0	31.5	5.0	NON - Poor	0.120	1.0	0.10	0.0	16.06	5.0	0.14	2.0	15.8	10.0	28.1	0.0	8.48	3.0	23.8	0.5	1.09	0.5	56.0	Highly Enriched
MF10	16.70	11.9	12.0	10.0	41.10	3.0	41.0	5.0	NON - Poor	0.079	0.0	0.10	0.0	18.23	6.0	0.28	2.0	17.9	10.0	21.0	0.0	7.72	3.0	5.8	0.0	1.38	1.0	60.0	Enriched
MF11	14.10	16.11	20.0	7.0	21.50	7.0	44.0	5.0	NON - Fair	0.093	0.0	0.10	0.0	14.71	5.0	2.65	1.5	12.0	10.0	21.5	0.0	5.32	3.0	16.3	0.0	1.45	1.0	60.5	Enriched
MF12	10.80	19.23	15.0	10.0	34.00	3.0	45.5	5.0	NON - Poor	0.074	0.0	0.24	0.0	13.07	2.0	0.61	2.0	12.5	10.0	59.9	1.0	2.16	0.0	5.5	0.0	0.96	0.0	67.0	Enriched
MF13	8.60	20.96	13.0	10.0	15.70	7.0	60.0	2.0	NON - Poor	0.136	1.0	0.76	0.0	9.28	0.0	1.72	2.0	7.5	10.0	29.8	0.0	1.24	0.0	7.8	0.0	1.04	0.5	67.5	Enriched
MF14	6.00	22.48	15.0	10.0	39.50	3.0	64.5	2.0	NON - Poor	0.095	0.0	0.78	0.0	10.09	0.0	5.25	1.0	4.8	3.0	62.2	1.0	0.52	0.0	5.0	0.0	1.39	1.0	79.0	Likely Nutrients
MF15	4.00	24.29	17.0	7.0	21.40	7.0	55.5	2.0	NON - Poor	0.074	0.0	0.87	0.0	11.99	1.0	4.98	1.0	7.0	10.0	49.0	1.0	1.16	0.0	6.5	0.0	0.92	0.0	71.0	Likely Nutrients
		i		-	-		-		-			West	Fork No	rth Bran	ch Chic	ago Rive	r 2021	-		h		_							
WF21	10.40	7.02	11.0	10.0	18.70	7.0	42.0	5.0	NON - Poor	0.224	1.0	0.35	0.0	9.78	0.0	0.33	2.0	5.5	7.0	104.0	3.0	1.20	0.0	11.5	0.0	1.80	1.5	63.5	Enriched
WF22	9.20	9.41	9.0	10.0	15.80	7.0	46.5	5.0	NON - Poor	1.953	6.0	6.26	1.0	16.81	6.0	0.46	2.0	15.2	10.0	37.3	1.0	2.76	1.0	25.0	0.5	2.02	1.5	49.0	Highly Enriched
WF23	4.90	17.86	9.0	10.0	13.80	10.0	41.0	5.0	NON - Poor	0.712	2.0	3.20	0.0	18.95	6.0	1.52	2.0	9.4	10.0	45.4	1.0	28.48	7.0	50.5	2.0	1.65	1.5	43.5	Highly Enriched
WF24	2.90	24.52	10.0	10.0	21.00	7.0	66.0	2.0	NON - Poor	0.472	2.0	2.23	0.0	10.18	0.0	2.21	1.5	7.8	10.0	37.4	1.0	6.44	3.0	19.5	0.5	1.66	1.5	61.5	Enriched
WF25	1.30	27.97	12.0	10.0	21.90	7.0	48.0	5.0	NON - Poor	0.408	2.0	2.33	0.0	9.22	0.0	1.89	2.0	5.5	7.0	46.3	1.0	9.24	3.0	15.5	0.0	1.15	1.0	62.0	Enriched
												1	North B	ranch Ch	icago R	liver 202	0												
MF19	18.60	93.4	13.0	10.0	21.40	7.0	48.5	5.0	NON - Poor	0.006	0.0	5.62	1.0	7.42	0.0	4.61	1.0	2.6	1.0	40.5	1.0	1.92	1.0	16.3	0.0	1.62	1.0	72.0	Likely Nutrients
		Excellent	<u>></u> 50	0	>73	0	>84.5	0	FULL	<u><0.106</u>	0	<u><</u> 3.77	0	<10.36	0	>6.9	0	<2.0	0	<35	0	<2.5	0	<u><17.50</u>	0	<1.07	0	<u>>94</u>	Not Nutrients
Condition	Category	Fair	30- <41	3	<u>-41.8</u> <u><41.7</u>	3	<75.9	2	NON-Partial	<1.020	2	<7.34	1	<14.2	2	>4.0	1	<5.0	3	<150	3	<13.8	3	>31.60	1	<1.12	1	<u>-</u> 62 <u>></u> 70	Likely Nutrients
inte		Poor	>15-29	7	<u><</u> 29	7	<50.1	5	NON-Fair	<1.726	5	<9.64	1.5	<16.3	5	>2.0	1.5	<6.5	7	<320	7	<28.9	7	>35.15	1.5	<2.14	1.5	<u>>60</u>	Enriched
So	irce	IPS	<15 IEPA	10 MBI	<15 IEPA	MBI	<25 IPS	MBI	IPS	<u>21.726</u> IPS	MBI	<u>>9.64</u> IPS	2 MBI	≥16.3 IPS	6 MBI	IPS	MBI	≥6.5 MBI/SNAP	10 M	<u>>320</u> BI/SNAP/NS	AC	>28.9 MBI/NSAC	IU MBI	>38.69 IPS	2 MBI	<u>></u> 2.14 IPS	MBI	<60	MBI/SNAP

Highly Enriched – 4 sites; Enriched -10 sites; Likely Nutrients – 5 sites

Modified Stream Nutrient Assessment Procedure (SNAP)

												Mean		Contin-		Contin-		Max.		Benthic		Seston-	Secto						
		Drainage							AQLU	Mean	Total	Nitrate-		Max.	Max.	Min	Min.	D.O.	Diel	Chloro-		Chloro-	n-ic	Mean		Mean		Total	Overall
	River	Area		fIBI		mIBI		QHEI	Attainment	ТР	Р	Ν	NO₃-N	D.O.	D.O.	D.O.	D.O.	Swing	Swing	phyll a	BChl a	phyll a	Chl a	TSS	TSS	TKN	TKN	SNAP	Enrichment
Site ID	Mile	(mi.²)	fIBI	Score	mIBI	Score	QHEI	Score	Status	(mg/L)	Score	(mg/L)	Score	(mg/L)	Score	(mg/L)	Score	(mg/L)	Score	(mg/m ³)	Score	(µg/L)	Score	(mg/L)	Score	(mg/L)	Score	Score	Status
				1				-						Skokie Ri	ver 202	0					1	1							
SR3	14.80	11.5	23.0	7.0	24.60	7.0	48.0	5.0	NON - Fair	0.006	0.0	0.20	0.0	10.95	1.0	2.05	1.5	8.9	10.0	41.0	1.0	1.22	0.0	12.0	0.0	0.66	0.0	67.5	Enriched
SR5	8.00	20.6	23.5	7.0	21.20	7.0	46.8	5.0	NON - Fair	0.006	0.0	0.41	0.0	7.42	0.0	2.10	1.5	5.3	7.0	65.8	1.0	3.00	1.0	13.3	0.0	1.15	1.0	69.5	Enriched
SR7 SR18	3.00	23.7	15.0 34.5	3.0	40.80	3.0	41.5	5.0	NON - Poor	0.006	0.0	8.53	1.5	7.45 8.03	0.0	3.78	2.0	2.8	10.0	45.2 9/1 3	3.0	15.88	7.0	17.5	0.0	1.13	1.0	73.5	Likely Nutrients
51(10	0.50	50.5	34.5	5.0	40.00	5.0	1210	5.0		0.000	0.0	Middle	Fork N	orth Rran	och Chic	aan Riva	pr 2020	5.0	1.0	54.5	5.0	15.00	7.0	17.5	0.5	1.45	1.0	75.5	
	1.80	57.3			25.20				NON - Poor			. 8.13			0.0	3.09	1,5					3,66		13.8					Likely Nutrients
7	15-			~	5			0.00	ade			Mic				a na Triv					d c				20		21		
MF8		381		S			15	U				0.1	\mathbf{U}		S.			570	10.0	ME			JE		20	50	1		Hig
		8.91	14.0	10.0	24.00	7.0		5.0	NON - Poor	0.120	1.0	0.10	0.0		5.0	0.14	2.0	15.8		28.1	0.5	8.48	3.0	23.8	0.5	1.09		56.	Highly Enriched
	16.70	11.9					41.0		NON - Peor			0.10			<u>60</u>	0.28	2.0		10,0										Enriched
		ne.	-					' <mark>_</mark>	<u>1 25</u>	\mathbf{a}	s e		$\left(\right)$		11		17	<mark>11</mark>			5		<mark>رکا</mark>	0	\mathbf{n}	SP) n	C Inriched
	10. 5		P				60.0															1.24							Enriched
MF14			15.0			2.0-										-5-25						0.52							
M			J 17.	7.0			20						20							4 2			. 5 1						
		<u> E</u> C					JE	5	リヨン	59				th E a	h				15		32		IJ			J			UIS-
WF21		7.02	11.0	10.0		7.0	42.0	5.0	NON - Poor	0.224	1.0	0.35	0.0		0.0		2.0	5.5	7.0		3.0	1.20	0.0	11.5	0.0		1.5		Enriched
			9.6	10.0		7.0			JON - Poor			6.26		1281				<u>. 11</u>		37.3	1.0	2.76			0.5	2.02	1.5		
	_4. 个	nin	S	57		<u>). 5</u>	2	<u>८</u> ८	Igh	inn		<u>ה</u>) <mark>1 P</mark> os (\mathbf{O}		7 2			n <mark>7</mark>		nín	A) (<u>n</u>	1 P (512	2)1		lighly Enriched
	2.			23	50	12		22	1211	4.2				1.18			JIC.	111	9.		19	ורר ו				23			DEnriched
WF25	1.30	27.97	12.0	10.0	21.90	7.0	48.0	5.0	NON - Poor	0.408	2.0	2.33	0.0	9.22	0.0	1.89	2.0	5.5	7.0	46.3	1.0	9.24	3.0	15.5	0.0	1.15	1.0	62.0	
ME10	18.60	02.4	12.0	10.0	21.40	7.0	18 5	5.0	NON Boor	0.006	0.0	5.62		ranch Chi	Cago K	1 C1		26	1.0	40.5	1.0	1.02	1.0	16.2	0.0	1.62	1.0	72.0	Likoly Nutrionts
101513	10.00	95.4	15.0	10.0	21.40	7.0	40.5	5.0		0.000	0.0	0.02	1.0	7.42	0.0	4.01	1.0	2.0	1.0	40.5	1.0	1.92	1.0	10.5	0.0	1.02	1.0	72.0	
Condition	Category	Good	<u>></u> 50 >41-49	1	>73 <u>></u> 41.8	1	>84.5	1	FULL	<0.277	1	<u><</u> 3.77 <5.05	0.5	<10.36	1	>6.9	0.5	<2.0	1	<35	1	<2.5	1	<u><17.50</u> >17.50	0.5	<1.07	0.5	<u>>94</u> <u>></u> 82	Not Nutrients
Three	holds	Fair	30-<41	3	<u><</u> 41.7	3	<75.9	2	NON-Partial	<1.020	2	<7.34	1	<14.2	2	>4.0	1	<5.0	3	<150	3	<13.8	3	>31.60	1	<1.63	1	<u>≥70</u>	Likely Nutrients
		Very Poor	<15	10	< <u>15</u>	10	<25	6	NON-Pair	<u>>1.726</u>	6	<u>>9.64</u>	2	<u>≥16.3</u>	6	<2.0	2	<u>>6.5</u>	10	<u>></u> 320	10	>28.9	10	>38.69	2	<u>>2.14</u>	2	<60	Highly Enriched
Sou	irce	IPS	IEPA	MBI	IEPA	MBI	IPS	MBI	IPS	IPS	MBI	IPS	MBI	IPS	MBI	IPS	MBI	MBI/SNAP	М	BI/SNAP/NS	AC	MBI/NSAC	MBI	IPS	MBI	IPS	MBI		MBI/SNAP

Highly Enriched – 4 sites; Enriched -10 sites; Likely Nutrients – 5 sites

Major Causes (%) Associated with Aquatic Life Impairments: NBWW 2018-2019

Major Causes (Weighted %) Associated with Aquatic Life Impairments: NBWW 2018-2019

Weighted Percent

Major Causes (%) Associated with Aquatic Life Impairments: NBWW 2018-2019

Percent

Major Causes (Weighted %) Associated with Aquatic Life Impairments: NBWW 2018-2019

A combination of urbanization coupled with legacy channelization, hydrological alterations, and low gradient, the latter precluding a more complete natural recovery absent direct intervention.

Weighted Percent

National Pollutant Discharge Elimination System **Program Considerations to Restrict PFAS Discharges**

Water Division - Permits Branch - NPDES Program

Per- and Polyfluoroalkyl Substances (PFAS)

- Overview of EPA's PFAS Strategic Roadmap
- Addressing PFAS Discharges to Waterways
 - Effluent Limitations Guidelines
 - Latest recommendations for NPDES Permits
 - Examples of State PFAS Approaches
 - New Funding Options to consider

EPA's PFAS Strategic Roadmap: EPA's Commitments to Action 2021-2024

- A whole-of-EPA strategy to protect public health and the environment from PFAS.
- EPA's Strategic Roadmap:
 - Sets timelines for concrete actions from 2021 to 2024;
 - Fills a critical gap in federal leadership;
 - Supports states' ongoing efforts

Photo of EPA Administrator Michael Regan

PFAS Lifecycle and EPA's Approach

PFAS contamination presents unique challenges. EPA's approach is centered around the following principles:

- Consider the Lifecycle of PFAS.
- Get Upstream of the Problem.
- Hold Polluters Accountable.
- Ensure Science-Based Decision-Making.
- Prioritize Protection of Disadvantaged Communities.

PFAS Strategic Roadmap: EPA's Commitments to Action 2021-2024

EPA's Goals in the Strategic Roadmap

RESEARCH

RESTRICT

REMEDIATE

Now, a sub-portion of the EPA PFAS Strategy – Addressing PFAS Discharges

Restricting PFAS Discharges

Reducing discharges to the environment and to publicly owned treatment works is a cornerstone of EPA's strategy to restrict PFAS.

EPA Region 5 will be working with our State counterparts to incorporate these elements into their NPDES programs.

The Current Effluent Guidelines Program Plan 15 (Plan 15) (January 2023)

Industrial categories in the proposed ELG Program Plan 15 related to PFAS.

- Organic Chemicals, Plastics & Synthetic Fibers Category
- Metal Finishing Category
- Electroplating Category
- Landfills Category
- Textile Mills Category
- Publicly Owned Treatment Works
- Pulp, Paper, and Paperboard Category
- Discharges from Airports
- Electrical and Electronic Components (E&EC) Category

For more information on the current status of each industrial category, please visit EPA's Plan 15 website: https://www.epa.gov/eg/current-effluent-guidelines-program-plan

Restricting PFAS Discharges

Effluent Limitations Guidelines (Plan 15) (New - January 2023)

NPDES PFAS Guidance (New - December 2022)

EPA's NPDES PFAS Memorandum Released on December 5th, 2022

Included are **recommendations** for EPA and States to address PFAS through NPDES permits and pretreatment activities and monitoring programs.

Applicable Industrial Direct Dischargers

Publicly Owned Treatment Works

Biosolids Assessment

Public Notice for Draft Permits with PFAS-Specific Conditions

Recommendations for Applicable Industrial Direct Dischargers

Recommendations for:

- Monitoring Effluent and wastewater residuals
- Best Management Practices (BMPs) for discharges of PFAS
 - Conditions based on pollution prevention/source reduction opportunities
 - Includes examples of BMP Permit Special Condition Language
- Stormwater Permits BMPs to address PFAS-containing firefighting foams for stormwater permits
- Permit Limits

Recommendations for Publicly Owned Treatment Works (POTWs)

Recommendations for:

- Monitoring Effluent, Influent, and Biosolids
- Pretreatment Program Activities
 - Update Industrial User Inventory
 - Utilize BMPs and pollution prevention to address PFAS discharges to POTWS
 - Establishing Local Limits

Some Examples of PFAS Implementation Practices by States

www.pca.state.mn.us

Guidance for Per- and Polyfluoroalkyl substances (PFAS): Sampling

The Minnesota Pollution Control Agency (MPCA) intends to update the information within this PFAS Guidance document as new information becomes available. Users of this PFAS Guidance are encouraged to visit the https://www.pca.state.mu.st/about-mpca/mpca-quality-system to access the current version of this document

Per- and Polyfluoroaliky substances (PFAS) are a suite of many human-made emerging contaminants composed of fluorinated organic chemicals. The sectual number of compounds is continuously growing. Some PFAS are no longer manufactured in the United States due to regulatory and voluntary acids not these substances are still present in historic wade sites, current waste streams, the atmosphere, soil, water, some products, and even our bodies. There are are many other PFAS that are mandactured and imported legislin to the United States.

Purpose and objectives

The purpose of this document is to provide guidance and information on collecting or handling PFAS environmental samples. This document also pertain to suburdares simpling exitities such as soil borings and/or well installation or well abandonment at PFAS sites. This guidance document is meant to be a resource for PFAS sampling, to provide guidance in order to improve sampling consistency and avoid crosse contamination. Decisions about sampling procedures and guality control samples should be made on a project pacefic basis. Discussion with project managers and/or WHC QA staff should consider data quality colectives.

General PFAS sampling considerations

Prior to conducting any PFAS sampling, review the project-specific quality assurance documentation. This should include a list of analytes, methods, environmental matrices, and desired reporting limits.

PFAS samples can easily be contaminated from sources such as consumer products or other PFAS-contaminated media. Potential cross-contamination in a typical sampling event may include:

- Water used during drilling or decontamination
- Sampling equipment
 Field clothing
- rield clothing
 Personal Protective Equipment (PPE)
- Sun and biological protection products
- Personal hygiene and personal care products

651-296-6300 | 800-657-3864 or use your preferred relay service | Info.pcal@state.mn.u

Food packaging

Other environmental media (soil, dust...)

Materials associated with sampling potential cross contamination can be categorized into acceptable, needs screening, or prohibited.

Michigan Narrative Translation

Wisconsin Numeric Standard

Minnesota – Robust Sampling

lanuary 2022 | p-eao2-27

EPA's PFAS Analytical Tool

Interactive Tools to Spatially Assess current extent of PFAS Monitoring

https://echo.epa.gov/trends/pfas-tools

Bipartisan Infrastructure Law and PFAS

The Bipartisan Infrastructure Law makes transformational investments in America's water infrastructure. It provides \$10 billion to invest in communities impacted by PFAS and other emerging contaminants, including:

\$4 billion	Drinking Water State Revolving Fund
\$1 billion	Clean Water State Revolving Fund
\$5 billion	Small or Disadvantaged Communities Drinking-Water Grants

Please work with your State on accessing SRF Funding

Recap and Future Considerations

- EPA's is taking a comprehensive approach to addressing PFAS in the environment
- Clean Water Act Restricting Upstream PFAS Discharges is a focus of the NPDES Program (Recently released ELGs and NPDES PFAS Guidance)
- EPA will be working closely with State counterparts to implement strategies. Including through BIL investments.

Thank you for your time!

Questions?

Andrea Schaller – <u>Schaller.Andrea@epa.gov</u> Matthew Gluckman – <u>Gluckman.Matthew@epa.gov</u>

Geosyntec Consultants

NORTH BRANCH CHICAGO RIVER WATERSHED

NBWW NARP Status Update

February 8, 2023

NARP Objective (Review)

Address phosphorus causing

- Excessive algae
- Dissolved oxygen problems
- pH problems
- Other contributing factors
 - Hydraulic modifications (dams, channelization)
 - Lack of riparian shading
 - Excessive streambank erosion
 - Loss of groundwater replenishment

Lower Des Plaines River. Photo by Cynthia Skrukrud.

Nutrient Assessment Reduction Plan (NARP)

2021 – Completed NARP Workplan

2022 – Completed Field data collection and analysis

- □ Field data supported full NARP for entire watershed
- Additional field data to be collected in association with the Skokie Lagoon
- NBWW presented data to IEPA seeking guidance on a one-year extension
- □ NBWW renewed contract to begin baseline model development

Strategic Data Collection and Analysis (2022)

- Nutrient related impairments likely in West Fork and Skokie River
- North Branch Chicago River does not show signs of nutrientrelated impairments
 - SNAP methodology had listed the stations in reaches as "Possible Nutrients"
 - Develop a NARP for Skokie and West Fork watersheds

Nutrient Assessment Reduction Plan (NARP)

Hydrologic Model Development (2023)

SWMM Model Development

- GIS data acquisition and digital catalogue
- Verify Watershed Boundaries
- Validate Catchment Size
- Review land use data
- Rainfall and gauge data
 review
- Calibrate hydrology (flow)
 and pollutant loading

Figure 2-3: Upper North Branch Chicago River Watershed Digital Elevation Model (DEM)

General Timeline and Schedule

QUESTIONS?

Brian Valleskey, CFM, CLP Bvalleskey@Geosyntec.com

Rishab Mahajan, P.E., CFM, CPSWQ <u>Rmahajan@Geosyntec.com</u>